منابع مشابه
A note on lifting projections
Suppose $pi:mathcal{A}rightarrow mathcal{B}$ is a surjective unital $ast$-homomorphism between C*-algebras $mathcal{A}$ and $mathcal{B}$, and $0leq aleq1$ with $ain mathcal{A}$. We give a sufficient condition that ensures there is a proection $pin mathcal{A}$ such that $pi left( pright) =pi left( aright) $. An easy consequence is a result of [L. G. Brown and G. k. Pedersen, C*-algebras of real...
متن کاملIdeal Projections and forcing Projections
It is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman-Magidor-Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove: (1) If I is a normal ideal on ω2 which satisfies stationary antichain catching, then there is an inner model with a Woodin cardinal; (2) For any n ∈ ω, it is consistent...
متن کاملa note on lifting projections
suppose $pi:mathcal{a}rightarrow mathcal{b}$ is a surjective unital $ast$-homomorphism between c*-algebras $mathcal{a}$ and $mathcal{b}$, and $0leq aleq1$ with $ain mathcal{a}$. we give a sufficient condition that ensures there is a proection $pin mathcal{a}$ such that $pi left( pright) =pi left( aright) $. an easy consequence is a result of [l. g. brown and g. k. pedersen, c*-algebras of real...
متن کاملRandom Projections
We consider the distribution of matrices R such that each R(i, j) is drawn independently from a normal distribution with mean zero and variance 1, R(i, j) ∼ N (0, 1). We show that for this distribution Equation 1 holds for some k ∈ O(log(n)/ε). First consider the random variable z = ∑d i=1 r(i)x(i) where r(i) ∼ N (0, 1). To understand how the variable z distributes we recall the two-stability o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 1972
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.176.4039.1151